Skip to content. Skip to more features. Skip to most popular. Skip to footer.

UCLA

The Revolution Will Be Printed in 3-D

Print
Comments

By Dan Gordon '85

Published Apr 1, 2014 8:00 AM


art

Hybrid Holism Dress, designed by Iris Van Herpen with Julia Körner, 2012; photo credit : Sophie van der Perre

How it Works

Known more formally as additive manufacturing, 3-D printing uses computer-generated digital models to create three-dimensional solid objects — the printer following the shape of the model as it spews out the selected materials, layer upon layer. "If you can imagine a coffee cup that's sliced into one-millimeter sections, a 3-D printer, using a laser to heat resin, can 'print' each of those sections in 3-D," explains Koerner. "They would come out layer by layer, building out that shape." Among the technology's many advantages: By printing only the materials needed for the structure, it is greener than traditional manufacturing, where ample material is left on the factory floor.

With 3-D printing, the geometric complexity of the object is no longer a barrier, or even an added expense. "The qualities germane to digital design — complexity, flexibility and variation — are difficult and expensive to realize using conventional industrial methods of production, but effortless and economical using 3-D printing," says Kivi Sotamaa, an architect and A.UD faculty member whose technology seminar and research studio focusing on 3-D printing resulted in the skateboard, as well as a host of other novel products.

Sotamaa believes that digital modeling, 3-D printing and tailored material technologies are precipitating a seismic shift in design and manufacturing. "Complexity, uniqueness and customization can potentially happen at high speed and industrial scale, enabling new, more complex and individualized products," he says. In this new paradigm, businesses that rely on materials transportation will increasingly be replaced by manufacturing based on digital transfer of files and local production. The ability to 3-D-print replacement parts on demand, as the U.S. military is already doing, provides a glimpse at a future in which there will be far less use of the traditional factory, or need to hold inventory.

art

Voltage Dress, designed by Iris van Herpen with Julia Körner, 2013; photo credit: Boy Kortekaas

To Your Health

The technology is ideal for so-called rapid prototyping — allowing researchers to quickly create, test and refine their products. "It gives you flexibility in testing out new things and then creating something in a matter of minutes or hours that would otherwise take months," says Aydogan Ozcan, a UCLA professor of electrical engineering and bioengineering. Ozcan has used 3-D printing to create microscopes, sensors and diagnostic tools that are integrated onto a cell phone, bringing the testing capabilities of an advanced medical laboratory into field settings through compact, inexpensive and lightweight instruments. "Almost any engineering project starts with a simple design, then you encounter things you hadn't considered that you need to change," Ozcan explains. "That aspect of iteration and design is what makes 3-D printing so convenient — the feedback between design, testing and redesign is much faster and more cost-effective."

In the laboratory of Bioengineering Professor Benjamin Wu, senior Shannon Wongvibulsin is involved in developing techniques to create molds for tissue-engineering purposes such as bone and cartilage repair, capitalizing on 3-D printing's ability to accommodate the micro-architectures specific to each patient's injury and regeneration needs. Her project seeks to use sucrose — sugar that is cheap, nontoxic and easily dissolved with water — to print scaffolds that facilitate bone and cartilage regeneration. (In the future, she hopes to directly match the patient's injury as visualized in a CT or MRI scan.) The scaffolds act as a sacrificial template used to mold the biomaterials into "tissue-engineering scaffolds," prior to dissolving the sucrose.

In Sotamaa's technology seminar, three architecture graduate students teamed to develop the prototype of a 3-D-printed wrist splint, which they hope will ultimately help to meet the needs of developing countries and disaster zones for quick, inexpensive and customized medical relief. The students — Derek Buell, Peter Nguyen and Nicholas Solakian — were inspired by a conversation with a disaster-relief physician who explained how prevalent and debilitating wrist and joint injuries are in poor and disaster-stricken areas. Their hope is that as 3-D printing becomes more feasible in these regions, it could one day reduce the time and expense of shipping the splints to areas that are in many cases remote. Their prototype — lightweight and intricate — considers both aesthetics and function.

Comments